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Abstract

In this paper we discuss the use of an implicit Newton-Krylov method to solve a set of partial
differential equations representing a physical model of a blast furnace stove. The blast furnace
stove is an integral part of the iron making process in the steel industry. These stoves are used to
heat air which is then used in the blast furnace to chemically reduce iron ore to iron metal. The
simulation of the stove’s behavior is the first step in a program to reduce the cost of operating these
stoves by minimizing the natural gas consumption during the heating cycle, while still maintaining
a high enough output air temperature in the cooling cycle to drive the needed chemical reaction
in the blast furnace. The formulation and solution of this optimal control problem will also be
discussed. The solution technique used to solve the discrete representations of the model and
control PDE’s must be robust to linear systems with disparate eigenvalues, and must converge
rapidly without using tuning parameters. The disparity in eigenvalues is created by the different
time scales for convection in the gas, and conduction in the brick; combined with a difference
between the scaling of the model and control PDE’s. A preconditioned implicit Newton-Krylov
solution technique was employed. The procedure employs Newton’s method, where the update to
the current solution at each stage is computed by solving a linear system. This linear system is
obtained by linearizing the discrete approximation to the PDE’s, using a numerical approximation
for the Jacobian of the discretized system. This linear system is then solved for the needed update
using a preconditioned Krylov subspace projection method.

Introduction

In this paper we discuss the use of an implicit
Newton-Krylov method to solve a set of partial dif-
ferential equations representing a physical model
of a blast furnace stove. The blast furnace stove is
an integral part of the iron making process in the
steel industry. These stoves are used to heat air

∗This work was performed under the auspices of the De-
partment of Energy under contract W–7405–ENG–36.

which is then used in the blast furnace to chem-
ically reduce iron ore to iron metal. Internally
these stoves consist of a combustion chamber and a
large mass of refractory brick. The operation of the
stoves is functionally divided into two phases. In
the first phase (heating cycle), the brick is heated
by burning a mixture of waste gas from the blast
furnace itself and natural gas in the combustion
chamber and allowing the hot exhaust gas to es-
cape through holes (flues) in the brick. In the sec-
ond phase (cooling cycle), normal air is heated by



forcing it through the flues in the heated brick and
mixing the resulting hot air with ambient air in the
combustion chamber to maintain a constant output
temperature. This hot air is then used in the blast
furnace to drive the desired chemical reaction. The
simulation of the stove’s behavior is the first step
in a program to reduce the cost of operating these
stoves by minimizing the natural gas consumption
during the heating cycle, while still maintaining a
high enough output air temperature in the cooling
cycle to drive the needed chemical reaction in the
blast furnace. The formulation and solution of this
optimal control problem will also be discussed. A
diagram of the stove is shown in Figure 1.

Figure 1: A diagram of a blast furnace stove. The
chamber on the left is where combustion of the fuel
gas takes place. The chamber on the right contains the
refractory brick. The insert in Brick Zone #2 shows
the shape of one of the bricks.

Model Description

Heat transfer within the stove is modeled with a set
of transient partial differential equations (PDEs)
that relate heat flux between the working gas and
the storage brick. An energy equation describes
the transient heat conduction within the storage

brick, and the radiative transport between the
working fluid and the storage medium. Specifi-
cally, the equations for the energy change in the
gas and the brick during the heating cycle are

ρg Cp,gAg
∂Tg

∂t
= hLg (Ts − Tg)

− Cp,g
∂Tg

∂z
ṁg(t) +Qcomb, (1a)

ρs Cp,sAs
∂Ts

∂t
= hLg (Tg − Ts) , (1b)

ρg =
pMg

RTg
, (1c)

∆p =
F ṁ2

g

2 ρg Lg A2
g

∆z, (1d)

Cp,g = u(Tg) h = v(Tg). (1e)

In these equations Tg(z, t) is the temperature of
the gas, Ts(z, t) is the temperature of the brick, and
both vary over time t and space z. The densities of
the gas and solid are, respectively, ρg and ρs. The
heat capacity at constant pressure for the gas is
Cp,g, and the heat capacity at constant pressure for
the brick is Cp,s. The quantity Lg is the perimeter
of a single hole in the brick. The quantity Ag is
the area of one hole in the brick, and As is the
area of the brick surrounding any one hole. The
quantity h is the heat transfer coefficient between
the gas and the brick, which consists of a portion
due to convection in the gas and a portion due
to radiation between the gas and the brick (i.e.,
h = hconvection + hradiation). The mass flow rate
of gas through the stove is ṁg(t). The molecular
mass of the gas is Mg, its pressure is p, and R is
the ideal gas constant. The friction factor for gas
flow in the flues is F .

Equation (1a) is the change in energy over time
for the gas, while Equation (1b) is the energy
change of the brick. The first term on the right
hand side of Equation (1a) represents the convec-
tion of heat between the gas and the brick in the
direction perpendicular to the flow of gas through
the holes. The second term on the right of this
equation represents the convection of heat in the
gas in the direction parallel to the flow of gas in the
holes. The right side of Equation (1b) represents
the convection of heat between the solid and the
gas, perpendicular to the gas flow. Note that the
only quantity available for controlling the amount
of heat in the stove is the mass flow rate ṁg(t). The
third term on the right hand side of Equation (1a)
represents the heat added to the stove by continu-
ing combustion of the fuel gas as it flows through



the flues. The burners in these stoves were not
designed to burn mixtures containing natural gas,
and the operators believe that as a result, not all
of the combustion takes place in the combustion
chamber. So when the gas enters the flues some
small percentage U of the fuel remains unburned.
We assume that all of this remaining fuel is burned
in the first D meters of each flue. As the gas travels
down the flue for a distance dz, the heat from burn-
ing UDdz of the remaining fuel is added to the gas
through the term Qcomb. This is continued until
all of the fuel is consumed at distance D.

Equations (1c), (1d), and (1e) describe the ef-
fect of gas temperature Tg on the density ρg, heat
capacity Cp,g, and heat transfer coefficient h. Ac-
counting for this temperature variation is neces-
sary because the gas temperatures vary between
about 1500◦C and 300◦C. Equation (1c) is simply
the ideal gas law, and Equation (1d) is an empirical
correlation for the pressure drop in a pipe due to
friction under turbulent flow conditions, which is
discussed in Bird et al. (1960, page 188). The func-
tion that was used for q(Tg) in Equation (1e) was
the empirical correlation for heat transfer in a pipe
under turbulent flow that is discussed in Bird et al.
(1960, page 399). The function used for p(Tg) was
determined by fitting the data in Hilsenrath (1955)
for the constituents of the exhaust gas.

Similarly the differential equations for the energy
change in the gas and the brick during the cooling
phase are

ρg Cp,gAg
∂Tg

∂t
= hLg (Ts − Tg)

− Cp,g
∂Tg

∂z
ṁg(t), (2a)

ρs Cp,sAs
∂Ts

∂t
= hLg (Tg − Ts) , (2b)

ṁg(t) =

(
1− Cp,g Tg(t)− Cp,g TboCp,g Tg(t)− Cp,g Tbi

)
ṁbi, (2c)

along with Equations (1c), (1d), and (1e). The air
going into the blast furnace ideally must be main-
tained at a constant temperature Tbo. In order to
achieve this goal, not all of the air is routed through
the stove during the cooling phase. Rather, some
of the air is diverted around the stove and is later
mixed with the air heated by the stove to maintain
the desired outlet temperature. The inlet air tem-
perature Tbi is assumed to be constant. Since the
temperature Tg(t) of the air heated by the stove
changes over time, the amount of air ṁg(t) routed
through the stove must also change over time. This
change in the flow rate through the stove is defined

by Equation (2c) and is referred to as the bypass
equation. Normally, the quantity of air passing
through the stove increases as the cooling phase
progresses, due to the cooling of the bricks. The
total mass flow rate into the stove–bypass system
ṁbi is assumed to be constant. A diagram depict-
ing the mass and energy flow in the stove is shown
in Figure 2. Note that the directions of both heat
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Figure 2: A diagram of the mass and energy flow in
the stove for the two phases of its operation. The area
of the white circle is Ag , and the area of the gray an-
nulus is As. Note that a cylindrical coordinate system,
centered at the middle of the hole in the brick, is used
in this diagram.

and mass flow during the cooling cycle are opposite
those during the heating cycle.

For computational purposes Equations (1) and
(2) must be discretely approximated. We use the
finite-volume formulation to discretize these equa-
tions in both space and time. In this technique,
the computational domain is divided into some
number of non-overlapping control volumes such
that only one grid point lies inside each control
volume. This set of control volumes must com-
pletely cover the original domain. The differen-
tial equations are then integrated over each con-
trol volume. Denote the states of the system by
the vector x† = [Tg Ts ρg Cp,g h]. These integrals



are evaluated by approximating the variation of x
between each grid point using piecewise profiles.
This procedure results in a set of discrete equa-
tions containing values of x for each grid point.
Intuitively these discrete equations define a con-
servation principle for x over the finite volume of
each cell, just as the original differential equations
express it for an infinitesimal volume. As an exam-
ple consider discretizing the term Cp ∂Tg∂z ṁg(t) = 0
Applying Gauss’ theorem to the volume integral
gives

∫
V
Cp ṁg(t)

∂Tg
∂z

dV = Cp
∫
V
∇ · (ṁg Tg) dV =

Cp
∮
S
(ṁg Tg) · n̂ dS = 0. In our problem, the

dimensions of each control volume are identical,
hence the discretized form of this term for the ith

grid point is Cp ṁg(t)
Tg,i+1 − Tg,i−1

2 ∆z
= 0. In this

particular example the result is identical to that
obtained with the finite-difference method, but in
general this is not the case.

The optimal control problem is cast as a set
of equations which minimize the area under the
curve describing the mass flow rate ṁg(t) over the
entire heating cycle time. The logic behind this
approach is that in order to minimize the cost of
heating the stove, one must minimize the amount
of fuel used to obtain the required total heat in
the brick at the end of the heating cycle. So this
optimization problem is a search over the space of
all functions ṁg(t), for the one which has mini-
mum area under it, subject to the constraint that
the amount of heat in the brick at the end of the
heating cycle must exceed some specified value.
There are numerous ways to formulate the search
for such a function. One promising approach that
we are pursuing involves framing the problem as
finding the minimum of a scalar performance cri-
terion function J(Tg, Ts, ṁg(t)) subject to a set of
constraints f(Tg, Ts, ṁg(t)) = 0, where the time-
varying vector function f(·) is given by rewriting
Equations (1) and (2). One way to solve this prob-
lem is to “adjoin” the performance criterion to
the constraint equations through a set of “undeter-
mined multipliers” such that the resulting equation
is H = J(Tg, Ts, ṁg(t)) + p†T f(Tg, Ts, ṁg(t)). For
this problem, intuitively the multipliers pT repre-
sent the sensitivity of changes in the mass flow rate
ṁg(t) to changes in the temperatures Tg and Ts.
An optimal mass flow rate satisfies the condition
∂H
∂ṁg

= 0. Carrying out the details of this formula-

tion yields a set of equations for the time evolution
of pTg and pTs analogous to those for Tg and Ts in
Equations (1) and (2). This system of four partial
differential equations can then be solved simulta-
neously for the optimal mass flow rate ṁg(t).

Solution Technique

We chose an implicit Newton-Krylov technique to
solve the discrete representations of Equations (1)
and (2) because the solution technique must be
robust for systems having disparate eigenvalues
in the linear approximation, and it must provide
rapid convergence without using tuning parame-
ters. The disparity in eigenvalues is created by the
different time scales for convection in the gas, and
conduction in the brick. Rapid convergence is re-
quired in order to compute the necessary changes
in the mass flow rate for the fuel gas during the
heating cycle, with sufficient time to implement
them as the heating cycle progresses. Lastly, a
parameter-free method allows the use of the tech-
nique by steel company personnel with limited ex-
perience in non-linear solution techniques. The
procedure employs Newton’s method, where the
update to the current solution at each stage is com-
puted by solving a linear system. This linear sys-
tem results from linearizing the discrete approxi-
mation to the PDE’s, using a numerical approxi-
mation for the Jacobian of the discretized system.
This linear system is then solved for the needed up-
date using a preconditioned Krylov subspace pro-
jection method.

Note that the system defined by Equations (1)
and (2) consists of both differential and algebraic
equations. The solutions consist of functions of
both the distance z and the time t. The time vari-
ation of the functions Tg and Ts must be tracked
because in both the heating and cooling cycles the
system does not come to steady state. This means
that at the end of either cycle the time derivatives
∂Tg
∂t

and ∂Ts
∂t

are not small. Because the solution
that must be tracked varies over space and time, a
two-dimensional grid was used to discretize Equa-
tions (1) and (2). The conditions at the initial time
become conditions along a boundary of the time
dimension of this grid, in analogy to elliptic prob-
lems. This treatment of time allows the temporal
derivatives to be incorporated into the Jacobian of
the discrete system in the same manner that spa-
tial derivatives are normally incorporated.

As indicated above, our solution technique
breaks down naturally into two parts. The first
part consists of searching for a nonlinear update to
the current solution. Conceptually, Equations (1)
and (2) can be rewritten as the vector equation
fc(Tg, Ts, ρg, Cp,g, h) = 0. An approximate solu-
tion to this differential algebraic system is given
by a set of states Tg, Ts, ρg, Cp,g, and h which



make the value of fc(·) close to zero. Intu-
itively, this is a root finding problem in which the
roots are functions of the distance z and the time
t. The discretized version of fc(·) is called the
nonlinear residual and is denoted fd(·). Collec-
tively the states are denoted by the vector x† =
[TgTsρg Cp,g h]. The root finding problem is to find
the state x which minimizes the nonlinear residual
fd(x). One way to solve this problem is to com-
pute the second order Taylor series expansion of
fd(x) about the point x

fd,i(x+ δx) = fd,i(x) +
n∑
j=1

∂fd,j

∂xj
δxj

+O(δx2).

(3)

Neglecting terms of order δx2 and higher and set-
ting fd(x + δx) = 0, we obtain a set of linear
equations for the corrections δx that move each
residual toward zero simultaneously. For the kth
iteration of the algorithm, the vector form of these
equations is

Jf (xk) δxk = −fd(xk), (4)

where Jf (xk) is the Jacobian matrix of the dis-

crete system
∂fd,k
∂xk

. The corrections are added to
the solution vector giving the update rule

xk+1 = xk + αk δxk, (5)

where αk ∈ (0, 1] is a weighting factor to keep the
algorithm from overshooting the solution. This al-
gorithm for root solving is commonly known as
the Newton-Raphson method or simply Newton’s
method, and it is discussed in Fletcher (1987).

The second part of the algorithm consists of find-
ing the solution for the linear system in Equa-
tion (4). This equation is of the general form
Ay = b, where A is an (n × n) matrix. The
method that we use is a conjugate-gradient-like
polynomial-based iterative scheme. The general
solution update is

yl = y0 + (γl0 r0 + γl1Ar0 + γl2A
2 r0

+ · · ·+ γl(l−1)A
l−1 r0),

(6)

where r0 = b − Ay0, rl is the linear residual
at step l, and y0 is the initial guess for the so-
lution of the linear system. This means that
the solution yl at step l is the initial solution
y0 plus a linear combination of vectors in the
set {r0, Ar0, A

2 r0, . . . , A
l−1 r0}. The space

spanned by this set of vectors is the Krylov sub-
space, which is denoted by Kl(r0, A). Since new

solution approximations are computed by project-
ing the linear residual rl onto a Krylov subspace,
these algorithms are collectively known as Krylov
subspace projection methods.

Equation (6) can be written in the simpler form

yl = y0 +
∑l
j=0 γlj pj . The manner in which pl

is computed defines a particular Krylov subspace
method. In general, two criteria can be used to
compute the pl vectors. The first criterion is to
pick pl to minimize some norm of the current linear
residual rl. The second criterion is to choose pl so
that the the current linear residual rl is orthogonal
to some set of vectors Ll, where Ll may be different
from Kl. Mathematically, these two criteria are

min
pl∈Kl

‖rl‖N = min
pl∈Kl

∥∥∥∥∥∥r0 −A
l∑

j=0

γlj pj

∥∥∥∥∥∥
N

, (7)

rl =

r0 −A
l∑

j=0

γlj pj

 ⊥ Ll, (8)

where ‖·‖N represents an arbitrary norm. By sat-
isfying the first criterion, the algorithm is guar-
anteed to converge to a solution which minimizes
some measure of the error between the exact and
approximate solutions. By satisfying the second
criterion, the algorithm is guaranteed to converge
in a finite number of iterations. The conjugate gra-
dient algorithm is derived assuming that A is sym-
metric positive definite, in which case both of these
criteria can be satisfied with the same algorithm,
for Ll ≡ Kl.

In most cases the Jacobian is not symmetric
positive definite, hence both of the above criteria
can not be satisfied simultaneously. There are nu-
merous algorithms based on different implementa-
tions of one of these two criteria. The technique
that we use is the Generalized Minimal Resid-
ual (GMRES) algorithm developed by Saad and
Schultz (1986). This algorithm has three distin-
guishing features. First, it is guaranteed to min-
imize the 2-norm of the linear residual ‖rl‖2 =∥∥∥r0 −A

∑l
j=0 γlj pj

∥∥∥
2

= ‖b−Ayl‖2. Second,

the search directions pl are I-orthonormal, mean-

ing that p†i pj = 0 for all i 6= j, and ‖pi‖2 = 1.
Third, the linear residual at any iteration is A-
orthogonal to all previous search directions, mean-
ing r†iApj = 0 for all i > j. Another way to
state the last condition is that the linear resid-
ual rl is orthogonal to the Krylov subspace Ll =
AKl(r0, A).

The speed of convergence for finding the solution



y of the linear systemAy = b depends on the ratio
of the maximum to the minimum eigenvalues of the
matrixA. If this ratio is large, then A is said to be
poorly conditioned. In many practical casesA is so
poorly conditioned that Krylov methods, such as
GMRES, do not converge at all. Preconditioning
makes a linear system easier to solve by improving
the condition of the A matrix. Preconditioning is
accomplished by multiplying both sides of the lin-
ear system by a matrix P which resembles A−1 in
some sense. The new system P Ay = P b is now
easier to solve than the original system. In our
application the preconditioner is applied to Equa-
tion (4) prior to solving for the linear correction
δxk using GMRES. Our preconditioner is an in-
complete LU factorization of the Jacobian matrix
Jf (xk) with level of fill-in m (i.e., ILU(m)).

This technique has numerous positive features.
It has been proven that the upper bound on the
convergence rate of Newton’s method is quadratic,
and the bound for conjugate-gradient methods is
superlinear. This means that our solution method
is capable of very fast convergence. Since the al-
gorithm is implicit we can follow any time scale in
the problem, rather than being forced to follow the
fastest time scale, as in explicit methods. This al-
gorithm directly minimizes both the absolute and
relative error of the solution. Because this method
is based on root finding, the resulting solution is
one for which fd(xk) ≈ 0, and ‖xk+1 − xk‖N ≈ 0
for some iteration k. Also this algorithm has mod-
est memory requirements, and has very few, if any,
parameters.

Of course this algorithm also has some negative
features. In practice Newton’s method often di-
verges unless it is started fairly close to a root. Fur-
thermore, for roots with order greater than one, the
upper bound on the convergence rate is linear. In
this application, although both of these difficulties
are still possible, there is one feature of the prob-
lem which simplifies matters. For a well-posed sys-
tem of differential equations, there is a unique real-
valued solution which depends continuously on the
initial and boundary conditions. Assuming that
this is also true for the discretized system, there
is only one real root for fd(xk) = 0. The fact
that there is only one real root may simplify the
task of computing it. Newton’s method can be
made more robust to the initial guess by adjusting
the size of the Newton step taken in each iteration
k using the parameter αk in Equation (5). Some
practical methods for doing this are discussed in
Press et al. (1992, pages 383–393). Another poten-

tial difficulty is that GMRES is not guaranteed to
converge in a finite number of iterations. This dif-
ficulty is dealt with by preconditioning the linear
system in Equation (4). The goal of precondition-
ing is to make this equation much easier to solve
without expending much computational effort con-
structing the preconditioner.

Simulation Results

First we will discuss the agreement between our
model and data taken from the stoves. Using the
model, it is possible to compute a temperature pro-
file down the length of the stove for both the gas
and the brick. Two plots showing the temperature
profiles in both the gas and the brick are shown in
Figure 3. Figure 3(a) shows the temperature ver-
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Figure 3: (a) The temperature versus distance at the
end of a heating cycle. The solid line is the gas temper-
ature and the dashed line is the brick temperature. The
three points • are temperature measurements taken in
the actual stove at these distances.
(b) The temperature versus distance at the end of a
cooling cycle.

sus distance at the end of a heating cycle. The solid
line is the gas temperature and the dashed line is



the brick temperature. The three points • are tem-
perature measurements taken in the actual stove
at these distances. Figure 3(b) shows the temper-
ature versus distance at the end of a cooling cycle.
Note that the zero distance in Figure 3 is referenced
to the top of Brick zone #5 in Figure 1. Note that
there appears to be reasonable agreement between
our model and the actual data. These plots also
illustrate that at the end of both cycles, the system
is not at thermal equilibrium. If thermal equilib-
rium were reached, the gas and brick temperatures
would be identical and both would be constant over
the length of the stove. Notice that there are only
three temperature measurements being made down
the length of the actual stoves. The biggest prob-
lem in assessing the validity of the model is this
lack of measurements from the actual system.

One measure of the state of the stove for which
more data is available is the amount of air not sent
through the stove during the cooling cycles. This is
usually expressed as the percentage of the total vol-
umetric flow rate into the stove-bypass system that
is actually routed through the bypass. Measure-
ments are made every 15 seconds of the total flow
rate into the stove-bypass system, and of the flow
rate into the stove. The percentage sent through
the bypass can easily be computed from these two
measurements. A comparison of the values com-
puted by our model and the actual data is shown
in Figure 4. Note that time is measured relative
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Figure 4: The percentage of the total volumetric flow
rate that is routed through the bypass as a function of
time.

to the total time for a combination of one heating
cycle and one cooling cycle. Four such complete
cycles are shown in the figure.

Next we will discuss the convergence properties
of our algorithm with respect to the number of it-
erations. As discussed in Luenberger (1984), the
rate of convergence of a sequence {un}∞n=0 which

converges to a limit u∗ is assessed by computing

β = limn→∞
‖un+1−u∗‖
‖un−u∗‖p where p is a positive inte-

ger. The order of convergence is the largest num-
ber p for which 0 ≤ β < ∞. If p = 1 and
0 < β < 1, then the convergence rate is said to
be linear. If p = 1 and β = 0, then the conver-
gence rate is superlinear. If p = 2, then the con-
vergence rate is quadratic. For example, given a
real number a such that 0 < a < 1, the sequence
un = an converges linearly, the sequence un = an

2

converges superlinearly, and un = a2n converges
quadratically. The convergence properties of our
Newton-Krylov algorithm are illustrated in Fig-
ure 5. Figures 5(a) and 5(b) plot the linear residual
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Figure 5: (a) The worst case convergence of ILU(m)
preconditioned GMRES while solving for δxk in Equa-
tion (4) during a heating cycle.
(b) The worst case convergence of ILU(m) precondi-
tioned GMRES while solving for δxk in Equation (4)
during a cooling cycle.
(c) The worst case convergence of Newton’s method
while solving for xlast using Equation (5) during a
heating cycle.
(d) The worst case convergence of Newton’s method
while solving for xlast using Equation (5) during a cool-
ing cycle.

‖fd(xk) + Jf (xk) δxl‖2 versus the linear iteration
number l for a fixed nonlinear iteration k during
a heating cycle and a cooling cycle respectively.
These two figures show the worst case convergence
of ILU(m) preconditioned GMRES while solving
for δxk in Equation (4). Similarly, Figures 5(c)
and 5(d) plot the nonlinear residual ‖fd(xk)‖2 ver-
sus the nonlinear iteration k during a heating cycle
and a cooling cycle respectively. These two fig-
ures show the worst case convergence of Newton’s



method while solving for the final solution xlast
using Equation (5). Note that the vertical axes
of these plots are logarithmic. Intuitively, on a
semi-logarithmic plot, a sequence which converges
linearly will appear as a straight line. A sequence
converging faster than linearly will have a nega-
tive curvature (i.e., curving downward) and one
converging slower than linearly will have positive
curvature (i.e., curving upward). Therefore Fig-
ures 5(a) and 5(b) indicate that ILU(m) precon-
ditioned GMRES is converging superlinearly. Fig-
ures 5(c) and 5(d) seem to indicate that Newton’s
method is converging linearly. It might be argued
from these plots that we are achieving a slow super-
linear convergence with Newton’s method, but in
any case it seems clear that quadratic convergence
is not being obtained.

We also investigated convergence with respect
to cell volume in the discrete approximation. In-
tuitively, as the cell volume is decreased at some
point the changes in the simulation results should
become very small. We performed a grid conver-
gence study and used the coarsest grid for which
the solution became invariant to the grid size.
Specifically we use 100 cells over the 36 meter
length of the stove, and 40 cells over the 90 minute
single cycle time. This means that the results in
this section are for grid converged solutions in both
space and time.

Conclusion

In this paper we have presented an implicit
Newton-Krylov method which we have used to sim-
ulate a physical model of a blast furnace stove. The
simulation of the stove’s behavior is the first step
in a program to reduce the cost of operating these
stoves by minimizing the natural gas consumption
during the heating cycle, while still maintaining a
high enough output air temperature in the cooling
cycle to drive the needed chemical reaction in the
blast furnace. The Newton-Krylov technique was
selected for several reasons. It is robust for solving
systems having components which evolve at very
different time scales. In this application, this prob-
lem is particularly acute during the cooling cycle
wherein the time scale of the bypass computation
in Equation (2c) is much faster than the time scale
of the gas heating in Equation (2a), which is in
turn much faster than the time scale of the brick
cooling in Equation (2b). The algorithm converges
rapidly to a solution, which is necessary in order to
compute near real-time changes in the fuel gas flow

rate as the heating cycle progresses. The method
is also parameter-free which is needed because the
stove operators have no experience with non-linear
differential equation solvers.
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